
ICT394 Business Intelligence

Application Development

Dr Danny Toohey

ICT285 Databases

Dr Danny Toohey

Topic 04: Normalisation

About this topic

In this topic, we’ll look at one of the central ideas in relational database design,

normalisation. Normalisation is a method of ensuring a 'good' relational database

design. Put simply, this means that the data is stored as efficiently as possible, with

no unnecessary duplication, and can be modified without the potential for

inconsistencies (anomalies) arising. A well designed database will also support the

processing required for information retrieval and decision making.

Topic Learning Outcomes

• After completing this topic you should be able to:

• Describe the aims of good relational database design through normalisation
• Explain the potential modification anomalies (update, insert and delete) associated with

redundant information in tables
• Identify functional dependencies among attributes
• Give definitions of the following normal forms: 1NF, 2NF, 3NF, BCNF
• Be able to identify which normal form a given relation is in from examining its functional

dependencies
• Normalise a given relation to a higher normal form
• Discuss some practical limitations that may be

associated with normalisation

Resources for this topic

READING

• Text, Chapter 3 “The Relational Model and Normalisation".

• Also skim through Chapter 4 “Database Design Using Normalisation

• There are many demonstrations on YouTube that you may find useful, e.g. Normalization
Example, http://www.youtube.com/watch?v=uO80f642LCY

Kroenke, D.M., and Auer, D.J., 2016, Database Processing: Fundamentals, Design
and Implementation, 14th Edition, Pearson, Boston.

http://www.youtube.com/watch?v=uO80f642LCY

Topic Outline

1. Relational design guidelines

2. Modification anomalies:
• Insertion anomalies
• Deletion anomalies
• Update anomalies

3. Functional dependencies

4. Normal forms: 1NF, 2NF, 3NF

5. Higher normal forms: BCNF, 4NF (briefly)

6. Normalisation in practice

Topic 04: Part 01
Relational Design Guidelines

Relational database design

Is about ensuring that:

• Relations can be added, deleted and updated without damaging the
consistency of the database

• The database can be queried to retrieve useful data – often by
combining records from more than one table

• The database performance is optimal for its uses

This is achieved by ensuring a good database design through the
process of normalisation

Properties of a relation

A valid relation has the following properties:
• A name that is distinct from all other relations

• Each attribute in a relation has a distinct name

• All cell values are atomic (multi-valued attributes are not allowed) – i.e., each
row/column intersection represents a single data value

• Values in attributes are from the same domain

• The attribute domain is the set of all possible values it may take. Definition
covers both physical (data type) and logical (semantic) values

• All tuples must be unique – i.e., there must be an attribute or set of attributes
that uniquely identifies each row

• Attributes are not ordered

• Tuples are not ordered

Reminder from Topic 2…

Example relation

StudentID FamilyName Degree Major GPA

12345678 WELLS BSc BIS 3.00

12456789 NORBERT BSc CS 2.70

23456789 KENDALL BSc GT 3.50

Note the following features of the Student relation
above:

1. Each tuple is unique

2. Each tuple is about ONE student

3. Each attribute contains data from the same domain

4. Each attribute has a unique name

5. Each cell is atomic

Reminder from Topic 2…

Keys

• Recall that each tuple in a relation must be unique for it to be a valid
relation

• Therefore, there must be an attribute or set of attributes that is
unique and so can be used to identify each tuple

• This attribute or set of attributes is called a key

• There are several types of key…
- Superkey

- Candidate Key

- Primary Key

- Alternate Key

- Foreign Key

Reminder from Topic 2…

Candidate Keys

A candidate key is…
- A minimal superkey

- A superkey is minimal (i.e. it is a candidate key) if you can’t remove any
attributes without it ceasing to be a key

- There can be more than one candidate key in a relation

- For example:
• MOTOR VEHICLE (EngineNo, RegistrationNo, Make, Colour, Model)
• --- EngineNo and RegistrationNo are both unique, so are both candidate

keys

Reminder from Topic 2…

Primary Keys

A Primary Key is
- The candidate key that is chosen to be the key for the relation

- A relation can only have one primary key

- The value of the primary key:

• MUST be UNIQUE

• MUST NOT be NULL

- If a primary key is made up of > 1 attribute, it is known as a
compound, composite or concatenated primary key

•TUTORIAL (TutorialDay, TutorialStartTime, TutorName)

Reminder from Topic 2…

How do we find candidate keys?

• Look at the data set - if you know that it is representative

• Formally – from the functional dependencies among the data
• We will look more at this in Topic 4, Normalisation

• In practice – from the meaning of the data in the real world
• e.g. your student number is designed to be a unique identifier

• Phone numbers and email addresses must be unique to be useful

Reminder from Topic 2…

Foreign Keys

A Foreign Key is:

• An attribute in one relation that is used to reference the primary key in
another relation

• This allows us to determine which records are related
STUDENT UNIT

StudentNo LastName UnitCode UnitName

20123456 Wells ICT285 Databases

20987654 Kendall ICT292 IS Management

20876567 Norbert ICT301 Enterprise Architectures

ENROLMENT

StudentNo UnitCode

20123456 ICT285

20123456 ICT292

20876567 ICT301

20876567 ICT285

20987654 ICT285

Reminder from Topic 2…

Foreign keys

• A well designed relational database will be able to link all its tables
through primary keys and foreign keys in a way that represents the
meaning in the data

• This gives us great flexibility in formulating queries to retrieve
combinations of information

• We’ll look at this formally when we cover normalisation…

Reminder from Topic 2…

Relational design guidelines

• The relations should be easy to understand

• So a relation should relate to a single “real-world” concept EG: table
about student

• Relations must not have any modification anomalies

• Therefore, any modification anomalies must undergo normalisation to
remove

• Relations should be able to be joined together (to get information from more than one
relation) without generating 'extra' records or losing information from original relation

• ‘Lossless join’ property: allows original relation to be identified from
corresponding smaller relations

• The Functional dependencies found in the original data should still be in the design

• Relations should be in at least 3NF

The takeaways…

• The relational database model provides great flexibility in design,
through having a number of tables that can be joined via primary and
foreign keys to provide combinations of information

• Obtaining a good design that achieves this flexibility while
maintaining correctness and consistency is done through a process
called normalisation

Topic 04: Part 02
Modification Anomalies

Modification anomalies

When there are redundant data and any changes to the data in relation

may cause Modification Anomalies to arise(i.e. bad design!)

Anomalies lead to inconsistency in the database:
• Insertion anomalies

The need to enter more data than is required (and which may not be
available). Because a primary key attribute may need to be entered or it
breaks entity integrity rule

• Update anomalies

Not all instances of data get updated so we have to make sure all
instances of duplicated (same) data is updated. So think repeated
attribute in column = must make sure all updated

• Deletion anomalies

Certain attributes are lost because of the deletion of other attributes

Example: Insertion anomaly

• To insert information about a new unit in the example above, we also
need to add a student and an offering of the unit (why?)

• Issue can’t add new unit because some of primary key attribute
missing i.e offering is missing, studentID thus break entity integrity
rule.

StudentID StudentName Address Unit Code Unit Title Offering Mark

20012001 Bruce 1 Random Cres ICT218 Databases S1 2010 65

20012001 Bruce 1 Random Cres ICT231 Systems Analysis and Design S1 2010 62

20011999 Mary 46 The Mews ICT231 Systems Analysis and Design S1 2010 48

20011999 Mary 46 The Mews ICT218 Databases S2 2009 50

Example: Update anomaly

• If we change Mary’s address we need to change two rows – and may
end up doing it inconsistently

StudentID StudentName Address Unit Code Unit Title Offering Mark

20012001 Bruce 1 Random Cres ICT218 Databases S1 2010 65

20012001 Bruce 1 Random Cres ICT231 Systems Analysis and Design S1 2010 62

20011999 Mary 46 The Mews ICT231 Systems Analysis and Design S1 2010 48

20011999 Mary 46 The Mews ICT218 Databases S2 2009 50

Example: Deletion anomaly

• If we delete Bruce’s enrolment in Databases in Semester 1, 2010, we
lose all information regarding that offering – but we only wanted to
delete Bruce

StudentID StudentName Address Unit Code Unit Title Offering Mark

20012001 Bruce 1 Random Cres ICT218 Databases S1 2010 65

20012001 Bruce 1 Random Cres ICT231 Systems Analysis and Design S1 2010 62

20011999 Mary 46 The Mews ICT231 Systems Analysis and Design S1 2010 48

20011999 Mary 46 The Mews ICT218 Databases S2 2009 50

What anomalies could occur in this
relation?

StaffNum Name Position Salary SchoolNum School School Phone

S21 Barry Brightwater School Dean 30000 MH47 Happiness x005

S37 Deloris Delight Lecturer 12000 LH53
Hopeless
Causes x003

S14 Carrie Cumbersome Professor 18000 LH53
Hopeless
Causes x003

S09 Albert Algorithm School Dean 9000 XS67
Low Self
Esteem x007

S05 Edwina Elocution School Dean 24000 LH53
Hopeless
Causes x003

S41 Frank Forensic Cleaner 9000 MH47 Happiness x005

Are those problems resolved?

StaffNum Name Position Salary SchoolNum

S21 Barry Brightwater School Dean 30000 MH47

S37 Deloris Delight Lecturer 12000 LH53

S14 Carrie Cumbersome Professor 18000 LH53

S09 Albert Algorithm School Dean 9000 XS67

S05 Edwina Elocution School Dean 24000 LH53

S41 Frank Forensic Cleaner 9000 MH47

SchoolNum School School Phone

MH47 Happiness x005

LH53 Hopeless Causes x003

XS67 Low Self Esteem x007

Can we still get the original relation back by joining the two new
tables?

This is called a lossless join

StaffNum Name Position Salary SchoolNum School School Phone

S21 Barry Brightwater School Dean 30000 MH47 Happiness x005

S37 Deloris Delight Lecturer 12000 LH53 Hopeless Causes x003

S14 Carrie Cumbersome Professor 18000 LH53 Hopeless Causes x003

S09 Albert Algorithm School Dean 9000 XS67 Low Self Esteem x007

S05 Edwina Elocution School Dean 24000 LH53 Hopeless Causes x003

S41 Frank Forensic Cleaner 9000 MH47 Happiness x005

StaffNum Name Position Salary SchoolNum

S21 Barry Brightwater School Dean 30000 MH47

S37 Deloris Delight Lecturer 12000 LH53

S14 Carrie Cumbersome Professor 18000 LH53

S09 Albert Algorithm School Dean 9000 XS67

S05 Edwina Elocution School Dean 24000 LH53

S41 Frank Forensic Cleaner 9000 MH47

SchoolNum School
School
Phone

MH47 Happiness x005

LH53 Hopeless Causes x003

XS67 Low Self Esteem x007

The takeaways…

• The aim of relational database design is to eliminate potential
modification anomalies caused by redundantly stored data

• Modification anomalies lead to inconsistencies in the database

• There are three types of modification anomalies:
• Insertion anomalies

•The need to enter more data than is required

• Update anomalies

•Not all instances of data get updated

• Deletion anomalies

•The unintentional deletion of data

26

Topic 04: Part 03
Functional Dependencies

Functional dependencies

• A functional dependency is a relationship between attributes such
that the value of one attribute can be found from the value of
another

StudentNo  Student Name

• FDs represent information about the system we are modelling – how
the attributes relate to one another in the real world

• Normal forms 1NF, 2NF, 3NF and BCNF are based on functional
dependencies between the attributes in a relation (higher normal
forms are based on other dependencies)

Importance of functional dependencies

• When we normalise a design to a ‘better’ one, the design must
preserve the functional dependencies found in the original relation

• This is called dependency preservation

• As functional dependencies provide the constraints on what the data means,
dependency preservation ensures the data remains correct and consistent

29

Functional dependencies

We can say that X determines Y if:

• There exists at most one value of Y for every value of X

• We write this as:

X  Y

For example: we can say that student number determines date of
birth, as for each student number there is one and only one date
of birth

StudentNo  DateOfBirth

(Can we say that date of birth determines student number?)

FDs - terminology

Consider the following relation:

EMPLOYEE (EmployeeID, Name, Address, DeptNo)

If the value of EmployeeID is known, the values of Name, Address and DeptNo
can be found - in other words:

• EmployeeID functionally determines Name, Address, DeptNo

• Name, Address, DeptNo are functionally dependent on
EmployeeID

• EmployeeID is called the determinant of the FD

Writing FDs

We write FDs as:

EmployeeID  Name, Address, DeptNo

Can also write as:

 Name

EmployeeID  Address

 DeptNo

(StudentNo, Unit, Semester, Year)  Grade
Note these four attributes TOGETHER determine Grade

Some rules about FDs

• Reflexivity
•If Y  X, then X  Y

• Augmentation
•If X  Y, then XZ  YZ

• Transitivity
•If X  Y, and Y  Z, then X  Z

• Decomposition
•If X  YZ, then XY and XZ

• Union
•If X  Y, and X  Z, then X  YZ

Example:

What functional dependencies can you identify in the
following relation (assuming the data is representative)?

List only the direct dependencies

StudentID Name Course Semester Year Grade UnitCode Title

S1 Kyle IT 1 2020 HD ICT231 Systems Analysis

S1 Kyle IT 1 2020 D ICT208 BI T&T

S2 Helen IT 1 2019 D ICT231 Systems Analysis

S2 Helen IT 1 2019 C ICT218 Databases

S2 Helen IT 2 2018 N ICT218 Databases

StaffNum Name Position Salary SchoolNum School School Phone

S21 Barry Brightwater School Dean 30000 MH47 Happiness x005

S37 Deloris Delight Lecturer 12000 LH53 Hopeless Causes x003

S14 Carrie Cumbersome Professor 18000 LH53 Hopeless Causes x003

S09 Albert Algorithm School Dean 9000 XS67 Low Self Esteem x007

S05 Edwina Elocution School Dean 24000 LH53 Hopeless Causes x003

S41 Frank Forensic Cleaner 9000 MH47 Happiness x005

What functional dependencies can you identify in the
following relation (assuming the data is representative)?

List only the direct dependencies

Example:

FDs and candidate keys

A candidate key is simply a more restrictive type of FD - a FD in which the value of the
determinant is unique

e.g. In the relation:

EMP_DEPT (EmpID, Name, Address, DeptNo, DeptName)

we have the direct FDs:

EmpID Name, Address, DeptNo

DeptNo  DeptName

In any EMP_DEPT table the same DeptNo may occur many times, but the value for EmpID (the
candidate key) is unique

- So this gives us a way of finding the candidate key(s) of a relation from the functional
dependencies in it

Deriving candidate keys from FDs

If we do not know the candidate key(s) of a relation, it can be found by
examining the FDs that occur in the relation:

• identify the minimum combination of attributes from which all others
can be found

• can use a dependency diagram as a visual aid

Dependency diagrams

StaffNum  Name, Position, Salary, SchoolNum

SchoolNumSchool, Phone

StaffNum Name Position Salary SchoolNum School School Phone

S21 Barry Brightwater School Dean 30000 MH47 Happiness x005

S37 Deloris Delight Lecturer 12000 LH53 Hopeless Causes x003

S14 Carrie Cumbersome Professor 18000 LH53 Hopeless Causes x003

S09 Albert Algorithm School Dean 9000 XS67 Low Self Esteem x007

S05 Edwina Elocution School Dean 24000 LH53 Hopeless Causes x003

S41 Frank Forensic Cleaner 9000 MH47 Happiness x005

StudentNo

UnitCode

Grade

UnitTitle

StudentName StudentNo  StudentName

UnitCode  UnitTitle

StudentNo, UnitCode Grade

Example:

What is the candidate key of this relation?

StaffNum  Name, Position, Salary, SchoolNum

SchoolNumSchool, Phone

StaffNum Name Position Salary SchoolNum School School Phone

S21 Barry Brightwater School Dean 30000 MH47 Happiness x005

S37 Deloris Delight Lecturer 12000 LH53 Hopeless Causes x003

S14 Carrie Cumbersome Professor 18000 LH53 Hopeless Causes x003

S09 Albert Algorithm School Dean 9000 XS67 Low Self Esteem x007

S05 Edwina Elocution School Dean 24000 LH53 Hopeless Causes x003

S41 Frank Forensic Cleaner 9000 MH47 Happiness x005

The takeaways…

• Functional dependencies show the relationships between attributes
in a relation

• In a FD X  Y, we say that:

X functionally determines Y

X is the determinant of the FD

Y is functionally dependent on X

• We can use the FDs in a relation to derive its candidate key(s), by
finding the minimum set of attribute(s) that determines all the others

40

Topic 04: Part 04
Normal forms and normalisation

Normal Forms

• A ‘normal form’ is a particular set of conditions that are true of a
given relation

• Normal forms were first defined as part of the relational model
theory by Codd, to address modification anomalies that could occur
in certain designs

• Although the theory on normal forms covers others (such as 5NF and
DKNF), for practical purposes we are most interested in 1NF, 2NF, 3NF
and BCNF

• The process of converting a relation to a set of relations in a higher NF
is called normalisation

Normalisation process

• Normalisation is a way of transforming an unsatisfactory relation
schema (one with modification anomalies) into a 'better' design

• Normalisation makes use of functional dependencies to:

1.Identify the candidate key(s) of the relation,

2.and then to examine how the other attributes relate to the
candidate key

3.If the design is less than optimal, normalise to a higher normal
form

1NF -- BCNF

Each NF becomes progressively more restrictive, which means that the
definition of any NF includes the definition of the preceding NF:

• 1NF: All valid relations are in 1NF

• 2NF: 1NF PLUS no partial functional dependencies

• 3NF: 2NF PLUS no transitive functional dependencies

• BCNF: 3NF PLUS all determinants are candidate keys

First Normal Form, 1NF

45

First Normal Form (1NF)

For a relation to be in 1NF, it needs to be a valid relation:
- No repeating groups or nesting in relations

This table is NOT in 1NF (i.e., it is unnormalised) – it is not a
valid relation

StudentID Name Course Semester Year Grade UnitCode Title

S1 Kyle IT 1 2020 HD ICT231 Systems Analysis

1 2020 D ICT208 BI T&T

S2 Helen IT 1 2020 D ICT231 Systems Analysis

1 2020 C ICT218 Databases

2 2019 N ICT218 Databases

Solution: complete the table

The relation is now in at least First Normal Form, 1NF

(Are there still potential modification anomalies in this design?)

StudentID Name Course Semester Year Grade UnitCode Title

S1 Kyle IT 1 2020 HD ICT231 Systems Analysis

S1 Kyle IT 1 2020 D ICT208 BI T&T

S2 Helen IT 1 2020 D ICT231 Systems Analysis

S2 Helen IT 1 2020 C ICT218 Databases

S2 Helen IT 2 2019 N ICT218 Databases

- Repeat StudentID, Name and Course for each tuple:

StudentID Name Course Semester Year Grade UnitCode Title

S1 Kyle IT 1 2020 HD ICT231 Systems Analysis

1 2020 D ICT208 BI T&T

S2 Helen IT 1 2020 D ICT231 Systems Analysis

1 2020 C ICT218 Databases

2 2019 N ICT218 Databases

Partial Functional Dependencies

In the 1NF relation below the FDs are:
StudentID  Name, Course

UnitCode  Title

StudentID, UnitCode, Year, Semester  Grade

So the candidate key is StudentID, UnitCode, Year, Semester

• But Name, Course depend only on StudentID – partial FDs

• Similarly Title depends only on UnitCode

StudentID Name Course Semester Year Grade UnitCode Title

S1 Kyle IT 1 2020 HD ICT231 Systems Analysis

S1 Kyle IT 1 2020 D ICT208 BI T&T

S2 Helen IT 1 2020 D ICT231 Systems Analysis

S2 Helen IT 1 2020 C ICT218 Databases

S2 Helen IT 2 2019 N ICT218 Databases

Modification anomalies in relations with
partial FDs

1NF still has the potential for modification anomalies:

• If we were to change the title of ICT208, then we would have to update
the title for every offering of the unit

• If we were to delete the only offering of unit ICT208, then we would lose
all details of that unit

• Could we insert a new unit into this table?

StudentID Name Course Semester Year Grade UnitCode Title

S1 Kyle IT 1 2020 HD ICT231 Systems Analysis

S1 Kyle IT 1 2020 D ICT208 BI T&T

S2 Helen IT 1 2020 D ICT231 Systems Analysis

S2 Helen IT 1 2020 C ICT218 Databases

S2 Helen IT 2 2019 N ICT218 Databases

First Normal Form, 1NF

• A relation is in 1NF if it is a valid relation – this is part of the definition

• It is in 1NF but no higher if it contains partial FDs

There are potential modification anomalies in 1NF relations

50

Second Normal Form, 2NF

51

Second Normal Form (2NF)

A relation is in 2NF if:

• It is in 1NF, AND

• There are no partial functional dependencies

• A partial FD exists where a non-key attribute is
determined by only part of the (compound) candidate
key

• 2NF removes any partial FDs

Partial Functional Dependencies

The relation below is in 1NF but not 2NF because it contains partial FDs

StudentID  Name, Course
UnitCode  Title
StudentID, UnitCode, Year, Semester  Grade

Candidate key is StudentID, UnitCode, Year, Semester

But Name, Course depends only on StudentID – a partial FD
Similarly Title depends only on UnitCode

StudentID Name Course Semester Year Grade UnitCode Title

S1 Kyle IT 1 2020 HD ICT231 Systems Analysis

S1 Kyle IT 1 2020 D ICT208 BI T&T

S2 Helen IT 1 2020 D ICT231 Systems Analysis

S2 Helen IT 1 2020 C ICT218 Databases

S2 Helen IT 2 2019 N ICT218 Databases

Solution: remove partial FDs

The solution is to remove the partial FDs from the relation, by making
each of them a new relation consisting of the determinant as primary
key and the attributes it determines directly:

RELATION1 (StudentID, Name, Course)

RELATION2 (UnitCode, Title)

We also make a third relation with the remaining FD:
StudentID, UnitCode, Semester, Year  Grade

RELATION3 (StudentID, UnitCode, Semester, Year , Grade)

Each of these relations is now in at least 2NF (as it turns out, they are also in 3NF)

Second Normal Form, 2NF

• A relation is in 2NF when all non-key attributes are fully (non-
partially) dependent on the candidate key

However, there may still be potential anomalies in 2NF relations due to
transitive FDs (next)

Transitive FDs

The candidate key of this relation is StaffNum

The relation is in at least 2NF, as there are no partial FDs

BUT there are transitive FDs as School, SchoolPhone depend on SchoolNum – not directly on the
candidate key StaffNum

Can anomalies still arise??

StaffNum  Name, Position, Salary, SchoolNum

SchoolNumSchool, SchoolPhone

StaffNum Name Position Salary SchoolNum School School Phone

S21 Barry Brightwater School Dean 30000 MH47 Happiness x005

S37 Deloris Delight Lecturer 12000 LH53 Hopeless Causes x003

S14 Carrie Cumbersome Professor 18000 LH53 Hopeless Causes x003

S09 Albert Algorithm School Dean 9000 XS67 Low Self Esteem x007

S05 Edwina Elocution School Dean 24000 LH53 Hopeless Causes x003

S41 Frank Forensic Cleaner 9000 MH47 Happiness x005

Modification anomalies in relations with
transitive FDs

2NF still has the potential for modification anomalies:

• If we were to change the title of School LH53, then we would have to update the
title for every staff member in it

• If we were to delete staff member 509 then we would lose all details of the School
of Low Self Esteem

• Could we insert a new School into this table?

StaffNum Name Position Salary SchoolNum School School Phone

S21 Barry Brightwater School Dean 30000 MH47 Happiness x005

S37 Deloris Delight Lecturer 12000 LH53 Hopeless Causes x003

S14 Carrie Cumbersome Professor 18000 LH53 Hopeless Causes x003

S09 Albert Algorithm School Dean 9000 XS67 Low Self Esteem x007

S05 Edwina Elocution School Dean 24000 LH53 Hopeless Causes x003

S41 Frank Forensic Cleaner 9000 MH47 Happiness x005

Third Normal Form, 3NF

58

Third Normal Form (3NF)

A relation is in 3NF if:
• It is in 2NF, and

• there are no transitive functional dependencies

• A transitive FD exists where a non-key attribute is
determined by another non-key attribute

• 3NF removes any transitive FDs

Transitive FDs

• The candidate key of this relation is StaffNum

• The relation is in 2NF but not 3NF because of the transitive FDs:

Solution?
StaffNum  Name, Position, Salary, SchoolNum

SchoolNumSchool, SchoolPhone

StaffNum Name Position Salary SchoolNum School School Phone

S21 Barry Brightwater School Dean 30000 MH47 Happiness x005

S37 Deloris Delight Lecturer 12000 LH53 Hopeless Causes x003

S14 Carrie Cumbersome Professor 18000 LH53 Hopeless Causes x003

S09 Albert Algorithm School Dean 9000 XS67 Low Self Esteem x007

S05 Edwina Elocution School Dean 24000 LH53 Hopeless Causes x003

S41 Frank Forensic Cleaner 9000 MH47 Happiness x005

Solution: Remove transitive FDs

The solution is to remove the transitive FDs from the relation, by making each of them a new

relation consisting of the determinant as primary key and the attributes it determines directly:

RELATION1 (StaffNum, Name, Position, Salary, SchoolNum)

RELATION2 (SchoolNum, School, Phone)

• Each of these relations is now in 3NF

• And note that we can join the new relations on primary key and foreign key

Are there any potential modification anomalies in these relations?

Third Normal Form, 3NF

• A relation is in 3NF when all non-key attributes are fully and non-
transitively dependent on the candidate key

• A relation in 3NF should have no modification anomalies

1NF – 3NF

1NF: All valid relations are in 1NF by definition (but may still have partial
FDs)

2NF: 1NF PLUS no partial functional dependencies (but may still have
transitive FDs)

3NF: 2NF PLUS no transitive functional dependencies (no partial or
transitive FDs)

Criteria for a good design

Recall that we also want the set of relations we produce to be a good
design as a whole

For this we need:

1.Each relation in at least 3NF

2.And the set of relations preserves all the FDs in the original
relation(s) (dependency preserving)

3.And the set of relations has the lossless join property

Once you have normalised to a set of 3NF relations, check for the
dependency preserving and lossless join properties too

64

How to normalise to 3NF – simply

• Write down all direct FDs for the relation (omit any that can be
derived from other FDs)

• Create a relation for each different determinant and the attributes it
determines, with the determinant as key

• If none of the relations contains a key of the original relation, create
another relation that consists only of the key (this ensures relations
can be joined successfully)

65

The takeaways…

Creating a good, 3NF design:

• If the table isn’t even in First Normal Form (1NF), put it in into 1NF

• Look at the sample data, or other information you have been given, and list the functional
dependencies in the data

• From the functional dependencies, find the candidate key(s)

• Examine the FDs in terms of the candidate key(s). Are any FDs partial or transitive?

• Remove partial and/or transitive FDs to convert to a set of relations each in 3NF

• Check that your set of relations has the dependency preserving, lossless join properties

66

Examples

1NF – 3NF

Example 1

Given the following relation and functional dependencies:

1.What is (are) the candidate key(s)?

2.Which NF is the relation in?

3.Convert the relation into a relation or set of relations in at least 3NF

STUDENT (StudentNo, Name, PrimaryMajor, School)

FDs: StudentNo  Name, PrimaryMajor

PrimaryMajor School

Example 2

Given the following relation and functional dependencies:

1.What is (are) the candidate key(s)?

2.Which NF is the relation in?

3.Convert the relation into a relation or set of relations in at least 3NF

ENROLS (StudentNo, Name, UnitCode, UnitName, Grade)

FDs: StudentNo  Name

UnitCode  UnitName

StudentNo, UnitCode  Grade

Example 3

Given the following relation and functional dependencies:

1.What is (are) the candidate key(s)?

2.Which NF is the relation in?

3.Convert the relation into a relation or set of relations in at least 3NF

COORDINATES (UnitCode, Semester, Option, Coordinator)

FD: UnitCode, Semester, Option  Coordinator

Example 4

Shop No Item No Date Qty Sold

S1 M2 3/10 4

S1 M3 3/10 4

S2 M2 3/10 2

S1 M2 4/10 7

Given the following relation and
functional dependencies:

1. What is (are) the candidate
key(s)?

2. Which NF is the relation in?

3. Convert the relation into a
relation or set of relations in
at least 3NF

SHOP (ShopNo, ItemNo, Date,
QtySold)

Each shop sells a number of
items on each day

Example 5

Given the following relation and functional dependencies:

1.What is (are) the candidate key(s)?

2.Which NF is the relation in?

3.Convert the relation into a relation or set of relations in at least 3NF
APPLICATION (ApplicNo, Customer, CustAddress, DateApproved)

•Each loan application is by one customer but each customer may make many applications

ApplicNo Customer Address Date Appr

X97 JoeBlog Perth 2/3

X99 Vicki Sydney 3/3

Y72 JoeBlog Perth 3/3

Example 6

Part No Description Vendor Address UnitCost

1234 Logic Chip Fast Chips Perth 10.00

Smart Chips Sydney 5.00

5678 Memory chip Fast Chips Perth 3.00

Quality Chips Sydney 2.00

Smart Chips Sydney 5.00

a) Convert this table to a single relation (called PART-
SUPPLIER) in first normal form. Illustrate the relation with
the same sample data.

b) List the functional dependencies in PART-SUPPLIER and
identify the candidate key(s).

c) Convert PART-SUPPLIER to a set of relations in at least
third normal form.

Topic 04: Part 05
Higher Normal Forms

Higher Normal Forms

- 1NF, 2NF, and 3NF are based on functional dependencies and the
relationship of non-key attributes to the candidate key

- As well as these there are higher normal forms that are based
on other things – we will look briefly at BCNF and 4NF

Boyce-Codd Normal Form, BCNF

76

Boyce-Codd Normal Form, BCNF

Anomalies can still arise in relations in 3NF
Consider the following relation:

STUDENT_ADVISOR (StudentID, Advisor, Major)

Where:

• a student can have many majors, and has a particular advisor for each

• a staff member will only advise for one major (although a major can have more than
one staff member as advisor)

The functional dependencies are:

•StudentID, Major  Advisor

•Advisor  Major

StudentID Advisor Major

654 Bill BIS

655 Bob GT

656 Hui Min CS

656 Mary GT

657 Shabnam CFISM

658 Bill BIS

BCNF

There are two possible candidate keys:

StudentID, Major

StudentID, Advisor

And we still have anomalies – e.g. can’t add new Major or Advisor unless there is a Student enrolled

StudentID
Advisor

Major

StudentID Advisor Major

654 Bill BIS

655 Bob GT

656 Hui Min CS

656 Mary GT

657 Shabnam CFISM

658 Bill BIS

BCNF

However, the relation is in 3NF as there are no non-key attributes
partially or transitively dependent on a candidate key – as there are no
non-key attributes

However there is a key attribute (Major) which depends on only part of
a key (Advisor)

SOLUTION:

• STUDENT (StudentID, Advisor)

• MAJOR_ADVISOR (Advisor, Major)

We can now update the two relations independently with no
modification anomalies - each is in BCNF

BCNF

BCNF is a ‘stricter’ version of 3NF that accounts for anomalies caused
by overlapping candidate keys

- Simply, a relation is in BCNF if:

• It is in 3NF, and

• Every determinant is a candidate key

Note that most relations that are in 3NF are also in BCNF, so you are
unlikely to have to deal with this in practice

Fourth normal form, 4NF

81

Fourth normal form, 4NF

• 4NF is based on multi-valued dependencies – where the value of one
attribute may determine several values of another

StudentNo ->> UnitCode

StudentNo ->> Sport
(a student is enrolled in many units, and plays many sports)

• This relation:

ACTIVITIES (StudentNo, UnitCode, Sport)
would result in modification anomalies – and would have to store EVERY combination so as not
to imply that the sport and unit code were associated with each other

82

Fourth normal form, 4NF

• Solution: put the MVD in a relation of its own, with a compound PK:

STUDENT_UNIT (StudentNo, UnitCode)

STUDENT_SPORT (StudentNo, Sport)

• A relation is in 4NF if it is in 3NF and has no multi-valued
dependencies

83

The takeaways…

• BCNF is a ‘stronger’ form of 3NF in which every determinant in a
relation is a candidate key

• 4NF eliminates multi-valued dependencies by making a relation for
each MVD, with a compound PK

84

Topic 04: Part 06
Normalisation in Practice

Normalisation in practice

• Normalisation helps to create a 'good' design

• However, in practice we also need to take into account processing
requirements on the database

• creating more tables means more joins, so slower processing –
this is the tradeoff for avoiding redundancy

e.g. What are the pros and cons for converting this 2NF table to 3NF?

PERSON-ADDRESS (Name, Street, Suburb, Postcode)

Name  Street, Suburb

Suburb  Postcode

Denormalisation

• We can always make the choice to leave a table in a less than 3NF
form (“denormalised”), based on how it will be used in practice

• We make these decisions during the physical database design stage

• But always start with a normalised design!

87

Topic 04: Part 07
Conclusion

The takeaways…

• Normalisation to at least 3NF will give a flexible database design with
no modification anomalies

• In practice, we can use ‘denormalised’ tables in less than 3NF if
processing requirements dictate

• But starting with a fully normalised design means that you can make
more informed decisions about denormalisation

89

Topic Learning Outcomes Revisited

• After completing this topic you should be able to:

• Describe the aims of good relational database design through normalisation
• Explain the potential modification anomalies (update, insert and delete) associated with

redundant information in tables
• Identify functional dependencies among attributes
• Give definitions of the following normal forms: 1NF, 2NF, 3NF, BCNF
• Be able to identify which normal form a given relation is in from examining its functional

dependencies
• Normalise a given relation to a higher normal form
• Discuss some practical limitations that may be

associated with normalisation

What’s next?

• We’ve now covered the theory and design of relational databases, and seen in the labs how they

can be accessed and queried through SQL. In the next few topics, we will look at the database

design process and how we move from a set of requirements through to a database that can be

implemented in the target DBMS.

